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Nonphysical grid effects in plasma simulation using the Multipole-Expansion scheme 
and Gaussian-shape charge particles are studied analytically in one dimension. General 
expressions for the linear dispersion relation, fluctuation spectra, energy, and momentum 
conservations are derived and then compared with those of the Cloud-in-Cell (CIC) 
scheme using cell-size clouds. The results indicate that the Dipole-Expansion scheme 
and its subtracted version have, in general, grid effects comparable to CIC. Grid effects, 
however, are greatly reduced in schemes keeping higher-order moments, such as the 
Quadrupole-Expansion scheme. 

1. INTRODUCTION 

Recently, Kruer, Dawson, and Rosen [l] have proposed the Multipole- 
Expansion (MPE) scheme for electrostatic plasma simulations with finite-size 
(extended) particles. According to this scheme, the moments of the charge density 
and the force are expanded about the nearest grid point. The above authors have 
used this scheme up to the dipole moment (Dipole-Expansion, DPE, scheme) in 
several one-dimensional problems, while Okuda and Dawson [2] applied it to 
study the plasma transport in multidimension. The results found using DPE are 
in general quite satisfactory. For example, the total energy is better conserved than 
in the Nearest-Grid-Point (NGP) scheme [3]. 

To determine the reliability of producing desirable physics, which is the most 
important property of plasma simulations, one has to examine the nonphysical 
properties associated with this scheme; notably, the grid effects [6,7]. Although 
there is computational evidence that DPE also suffers from the usual grid insta- 
bilities with growth rate comparable to that of CIC or PIC [8], no systematic 
theory exists. 

The purpose of the present work is to study the nonphysical grid effects in the 
MPE scheme and to compare them with the corresponding theory of Langdon for 
CIC and PIC schemes [7,9]. This is quite useful, not only for providing better 
understandings of the MPE scheme, but also for comparison among various 
simulation schemes. 
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In the following sections, grid effects in the MPE scheme are investigated 
theoretically. For simplicity, we assume the simulation plasma to be infinite, 
uniform, and one-dimensional. There is no static magnetic field. Ions are immobile 
and form a neutralizing background. Since we are interested in the spatial grid 
effects, we assume the time to be continuous; i.e., we take the dt ---f 0 limit. 
Extensions to multidimensional, multicomponent, periodic, finite dt or magnetized 
models are straightforward. In Section 2 a brief description of the algorithm is 
given. Assuming the simulation plasma is collisionless, linear dispersion relation 
correct to all moments of expansion is then derived and analyzed in Section 3. 
Comparisons are made between CIC, DPE, and the Quadrupole-Expansion (QPE) 
schemes. Section 4 contains derivations and discussions of the fluctuation spectra. 
Energy and momentum conservations are examined in Section 5. In Section 6, 
we analyze the Subtracted-Dipole-Expansion scheme, which is faster in field 
calculations than DPE. Final conclusions and discussion are given in Section 7. 

2. ALGORITHM 

The Multipole Expansion scheme works in the following way. 

1. At each time step t, the moments of a charged particle with respect to its 
nearest grid point are first calculated. Let the ith particle be in thejth cell; i.e., 
1 xi - x, 1 < AX/~. H ere Xi and xj = j Ax are the positions of the ith particle and 
the jth grid point, respectively. Ax is the grid spacing. The zeroth moment (mono- 
pole) is then given by 

foCL t> = C 1, (1) iEj 
the first moment (dipole) is 

fdj, t> = C k0) - 4, (2) iEj 
and the Ith moment is 

2. As the second step, discrete Fourier transforms of p,r(x, t), p,&, t) are 
obtained. Here, P&Z, t) = 7 pr(j, t) 6(x - xi> is a function of the grid quantities 

pt . Since the charge density p(x, t) is given by 

P(G f) = 4 i J dx'S(x - x')~&prl(x', t), 
l=O 
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its Fourier transform for 1 k dx 1 < 7r can be written as 

p(k 0 = Nk) zzo y psdk 0, (5) 

where 
S(k) = exp[-(ku)2/2] (6) 

is the shape factor of a Gaussian cloud with the “width” 2~. 
3. The third step is using Poisson’s equation to obtain the Fourier transforms 

of the moments of force for 1 k Ax 1 < a; 

I;b(k, t) = &(k) W, 0 (7) 
= -hqS(k) p(k, t)/k, (74 

and 
F,(k, t) = (ik)l F,(k, t). (8) 

4. Inverse discrete Fourier transform F,(k, t) to Fl(j, t). 
5. The last step is to calculate the force on the ith particle in the jth cell which 

is given by 

Fre, (xi , t) = f [xi’f)z; xi1” &(j, t). 
Z=O 

(9) 

6. With F(x~ , t) calculated, the ith particle is pushed forward to the next time 
step t + d t using the usual time-centered leap-frog particle pushing scheme. 

3. DISPERSION RELATION 

As the fist step in analyzing the property of the MPE scheme, the dispersion 
relation is considered here. In order to obtain the linear dispersion relation, we 
analyze the particle dynamics using the algorithm described in the preceding section. 
Let us define the NGP weighting function, C(x), as 

I x I < w2, 
otherwise. 

Then, the Zth moment of the particle density is given by 

pz(j, t) = Ax m dx’(x’ I - x,)” fql xj - x’ I) n(x’, t), --m 

(10) 

(11) 
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where 

n(x, t) = ; 6[x - Xi@)] W) 
i=l 

is the microscopic particle density and N is the total number of particles. Note 
that for an infinite system we require that as N and L (system length) become 
infinite, the average uniform density n, = N/L stay finite. Now for p,r(x, t) 
defined as 

P&, 0 = f Pz(i f> 6(x - -d, (13) 
j--m 

its (spatial) Fourier transform is 

&(k, t) = f (4)” w’yk,) n(k, , t), (14) 
p=-c.2 

where 
w(k) = sin(k Ax/2)/(k AX/~), (15) 

w(z)(k) = dzw(k)/dkz, k, = k - pk, , and k, = 2~r/Ax. Poisson’s sum formula [lo] 
is used to derive Eq. (14). Substituting Eq. (14) into Eq. (5), we have for ( k Ax 1 < n, 

and 

(16) 

I( y, z) = ioy wyz). 

It is understood that the sum ofp runs from - KI to co. 
For the grid force functions, we define 

(17) 

F&(X, t) = f Fl(“j, t) 6(x - Xj). WI 
2=-m 

From Eq. (9), the force felt by a particle at x is then given by 

F(x, t) = Ax f j- dx’ (x ;! x’)z C(I x - x’ I) F,,(x’, t). 
I=0 

The Fourier transform of F(x, t) is 

F(k , t) = Ax f 0” 
z=o I! 

wJz)(k) Fgl(k, t). 

(19) 

(20) 
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Now if one defines F,(k, t), Eq. (8), to be a periodic function in k with the perio- 
dicity kg, FJk, t) is then by 

F,z(k 0 = & Fz(k, 0 = &- Wz E,(k f>, (21) , 
and 

F,z(k + A, 9 = Fgz(k, 0. (22) 

Now, in order to obtain the linear dispersion relation, we assume that the 
simulation plasma is collisionless (Vlasov) and that time is continuous. Then the 
force and density perturbation are related through the Vlasov equation. In the 
linear regime we obtain for the perturbed density nl(x, t), 

where 
n,(k ~1 = -~h/~) NG ~1 F(k, 01, (23) 

#(k, w) = j- s dv. (24) 

fO(v) is the equilibrium velocity distribution function, and Im w > 0 for the 
Laplace transform in time. From Eqs. (7a), (16), and (20~(23), and note n(k, w) = 
27r4,6(k) + n,(k, w), we find for k # 0 and ] k Ax 1 < TT, 

p(k) = -wD2 T c 12(k, k,) We 34 p(k). 
P 

(25) 

wp is the plasma frequency. The linear dispersion relation for [ k dx 1 < 7~ is then 

4k w) = 1 + q,2[S2(Wkl 1 12&, k,) #(k, ,4, Imw 30. (26) 

For l(k - rk,) Ax 1 < r, one simply replaces k in Eq. (26) by kr to obtain the 
corresponding dispersion relation. For comparison, the dispersion relation of the 
standard charge-sharing scheme is [7] 

+b w> = 1 + (Q&“/K) c I ~y2(kp)IOL #(k, , 01, Imw >, 0. (27) 
P 

Here, 01 = 1 for NGP and (Y = 2 for CIC or PIC with cloud size dx. K is a function 
of k and is related to the Poisson solver. For example, K = tan(k dx/2)(.4~/2)-~ 
when a finite differencing scheme is used for Poisson’s equation. There is, however, 
freedom in choosing the form of K within the first Brillouin zone, 1 k Ax 1 < TT, 
so that the desired physics can be best achieved [7]. By comparing the forms of E 
and Z, one can easily see that the MPE scheme has the usual grid instabilities; e.g., 
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FIG. 1. Plot of weighting functions, Is, with p = 0 for DPE, SDPE, QPE, and CIC schemes. 
The clouds in CIC are of cell size. 

FIG. 2. Plot of weighting functions, I*, withp = 1 for DPE, SDPE, QPE, and 
The clouds in CIC are of cell size. 

CIC schemes. 



MULTIPOLE-EXPANSION SIMULATION THEORY 345 

in a stationary Maxwellian with X,/Ax - 0.1, as the charge-sharing schemes 
P5,7, 81. 

To examine quantitatively the grid effects in the MPE scheme, the weighting 
functions, I2 in Eq. (26), corresponding to DPE and QPE are numerically evaluated 
for k Ax = 0.1 to 3.0 and p = 0, &l, &2. The expressions of the weighting 
functions are 

IM2(k, k,) = [ ‘f. y w”‘(k,)]2. (28) 

Here, A4 = D, Z, = 1 for DPE and M = Q, I, = 2 for QPE. For comparison, 
similar evaluations are carried out for the weighting function of CIC with cell-size 
clouds, which is given by 

Ic2(k, k,) = w4(k, k,). (2% 

The results are shown in Figs. l-5. Because in the CIC scheme one often practices 
additional k-space smoothings to suppress the short-wavelength (I k Ax I 2 1) 
modes, the Gaussian shape factor, which has similar effects, is, therefore, not 

FIG. 3. Plot of weighting functions, I*, with p = - 1 for DPE, SDPE, QPE, 
The clouds in CIC are of cell size. 

and CIC schemes. 
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FIG. 4. Plot of weighting functions, P, with p = 2 for DPE, SDPE, QPE, and CIC schemes. 
The clouds in CIC are of cell size. 

introduced into the weighting functions of the MPE scheme. Furthermore, since 
only the long-wavelength (I k Ax ) < 1) modes are of physical interest, we con- 
centrate our discussions on this regime. 

Figure 1 plots the weighting functions of the various schemes for p = 0; i.e., 
they correspond to the dynamics produced by the forces averaged over the grid 
points. For [ k Ax 1 < 1, similar to UC, Jo2 N 1c2 N 1, which gives us confidence 
in the capabilities of the schemes to produce the desired physics in the long- 
wavelength regime. It should be noted, however, that these curves do not help one 
choose between CIC and the MPE schemes. 

The grid alias effects are shown in Figs. 2-5, where the weighting functions of 
the various schemes are plotted for p = f 1 and f2. In general, for I k Ax I < 1, 
the grid alias effects of DPE and CIC with cell-size clouds are comparable; con- 
sistent with simulation results [8]. The QPE scheme, which includes one higher 
moment of expansion and, therefore, involves additional computational work 
significantly reduces the grid alias effects. Note, however, CIC using more sophis- 
ticated particles (e.g., the parabolic spline) has also been practiced successfully to 
reduce the alias effects. 
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FIG. 5. 
The clouds 
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Plot of weighting functions, 12, withp = -2 for DPE, SDPE, 
in CIC are of cell size. 

QPE, and CIC schemes. 

4. FLUCTUATION SPECTRUM 

Let us consider a homogeneous, stationary, and stable (physically as well as 
nonphysically) ensemble of simulation plasmas. Using Eq. (16), and the well-known 
result of density fluctuation in a plasma, the spectrum of charge density fluctuation 
for MPE and I k dx 1 < 7r can be readily obtained as 

(g,) 
k.0 (30) 

The electric field fluctuation spectrum then is 

(E2>k.cu = (477/k)2G02),,, * (31) 

As a comparison, the corresponding expression for CIC with cell-size clouds is [9] 

Thus both spectra essentially yield the gridless spectra for 1 k dx 1 < 1. 
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We can also find the force fluctuation spectrum from Eqs. (7), (20), (21), and 
(31); i.e., 

tm,w = q*z*uG k) ww2)k,w - (33) 

Using (F2)k,w , a corresponding Balescu-Lenard kinetic equation can be constructed 
following the method of Langdon for the charge-sharing scheme [9]. This is 
straightforward and we will not go into it here. 

5. ENERGY AND MOMENTUM CONSERVATIONS 

Since the check on energy and momentum conservations is always an assurance 
of good physics and is being widely used, we examine it here for the MPE scheme. 
The time rate of change in the field energy is given by 

= - &c (I;* dk S(k) Z(k, k,) E(k, t) J(-k, , t) k,/k. (34) 
P 0 

Here, J(k, t) is the current density. In deriving Eq. (34), we have used Poisson’s 
equation, Eq. (16), and the continuity equation. Now, the time rate of change in 
the kinetic energy is given by 

-$ K.E. = 2+J‘_m dk F J(-k, t), 
m 

which becomes, with Eqs. (7) and (20)-(22), 

$ K.E. = &c /:;I2 dk S(k) Z(k, k,) E(k, t) J(-k, , t). 
P 

(35) 

(36) 

Combining Eqs. (34) and (36), we have 

$ (T-E.) = &y ,c, j-m;‘;2 dkS(k) Z(k, k,) E(k, t) J(-k, , t)(l - k,/k). (37) 
I 

Note that k, = k for p = 0. Thus, energy is not conserved due to the presence of 
the grid aliases ( p # 0 terms) as in the CIC scheme. 

As to the momentum, it is conserved (not so obviously) for the MPE as well as 
for charge-sharing schemes. The proof is given in the Appendix. 
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6. SUBTRACTED-DIPOLE-EXPANSION SCHEME 

In order to reduce the number of Fourier and Inverse Fourier transforms 
required in the standard DPE scheme (four times in one dimension), Kruer et al. 
[l] proposed an alternative algorithm, the Subtracted-Dipole-Expansion (SDPE) 
scheme, which requires only two transforms in one dimension; i.e., the same as in 
NGP. SDPE differs from DPE in that the derivatives are replaced by the difference 
between the neighboring grid points. That is, in charge density calculation we have 
at each grid point an effective grid charge 

p,(j, f) = Pdj, t) - bl(j + 1, t> - Pl(j - 1, two x. (38) 

The corresponding p(k, t) for I k dx I < rr then is given by 

psdk t) = +W) p,e(k 0, (3% 

where ple(x, t) = 
T 

pd(j, r) 6(x - Xj). As in DPE, we obtain F,,(k, t) for 

1 k dx 1 < 7~ and, hence, FO(j, t) from p&k, t) using Eq. (7). The force felt by the 
ith particle in thejth cell, however, is modified to 

J-i&i) = w, 0 + (Xi - Xj)[F&j + lv r, -FO(j- l, t)1/2dx- WI 

Since this scheme is faster than DPE in field calculations and appears to give 
satisfactory results [l], it is worthwhile to examine SDPE in more detail. In the 
following, we derive the corresponding dispersion relation and discuss its grid 
properties with respect to other schemes. The analyses are similar to those in 
Section 3. 

From Eq. (38), p,,(k, t) can be shown to be 

p&, t) = p&, 1) - ikw(W ,dk f>. 

Using Eq. (14) for pso and psi in Eq. (41), Eq. (39) reduces to 

(41) 

where 

(42) 

&DC Y, 4 = w(z) - P4oY) w(W. 

Similarly to Eq. (20) we find, for the force, 

(43) 

F(k 9 I) = fix k 0” dz)(k) F,,(k r) 
I=0 I! ’ ’ WV 
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Combining Eqs. (7a), (23), (42), (44), and (45), we obtain the linear dispersion 
relation for 1 k Ax 1 < TT, 

S’(k) e&k, 0) = 1 + wD2 - k T &dk, k,) #(k, , ~1, Im w 3 0. (46) 

Equation (46) indicates that the usual grid instability, again, would occur in SDPE. 
To compare the grid effects with those in other schemes, we compute, similarly, 
I,“, for p = 0, fl, and f2 over the same range of k dx, from 0.2 to 3.0. The 
results are also shown in Figs. 1-5. Again, we concentrate on the physically 
important long-wavelength (1 k dx ) < 1) modes. These plots indicate that for 
1 k dx 1 < 1 the grid effects in SPDE are comparable to those in DPE and CIC. 
Since SPDE is computationally faster than DPE, our results suggest that SDPE is 
preferable to DPE. Although we have only analyzed the Subtracted-Dipole case, 
the above analyses can be extended to include the higher moments. 

7. CONCLUSIONS AND DISCUSSION 

In the previous sections, using a one-dimensional model, we have theoretically 
analyzed the Multipole-Expansion simulation scheme proposed by Kruer et al. [I 1, 
and compared it with other schemes. A linear dispersion relation correct for all 
moments of expansion is derived, which shows the existence of nonphysical grid 
effects. Comparison of grid effects in CIC with cell-size clouds, DPE, and QPE 
indicate that for long-wavelength (I k dx I < I), where the physics is most 
important, the grid effects in CIC and DPE are comparable, but larger than those 
in QPE. We also derive expressions of fluctuations in the MPE scheme. We 
demonstrate that, similar to CIC, for MPE the total energy is not conserved due 
to the alias effects (p # 0 terms). The MPE scheme, however, conserves the total 
momentum as in the CIC scheme. 

We also examine the Subtracted-Dipole-Expansion scheme, which reduces the 
number of Fourier transforms required in DPE and, hence, is faster in field calcula- 
tions than DPE. The corresponding dispersion relation is derived and analyzed. 
For I k dx ] < 1, grid effects are comparable to CIC and DPE. 

The above results, thus, suggest that nonphysical grid effects associated with the 
MPE and the Subtracted-MPE schemes, such as DPE and SDPE, are in general 
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comparable to those in CIC. Note that in the present work we have treated the one- 
dimensional case. Although we expect similar properties in higher dimensions, 
exact analyses are needed in the future. 

As we have shown, by keeping higher moments in the multipole expansion, grid 
effects can be greatly reduced in the long-wavelength (I k dx I < 1) regime, which 
is generally the most important regime of physical interest. Thus, it appears that 
the MPE scheme can also be used to reduce the grid effects and, therefore, in 
producing the desired physics. As remarked before, comparisons between the MPE 
and spline schemes involving similar amounts of computation remain to be worked 
out. 

One of the examples which require the high accuracy of electric field calculations 
is the two-dimensional guiding center model in a strong magnetic field [ll]. The 
particle motion is approximated as being a massless guiding center in this model 
and, therefore, there is no kinetic energy associated with particles. The electric 
field calculations then determine the accuracy of the evolution of the system 
and so it is essential to have highly accurate computation when determining the 
irreversible transport processes such as particle diffusion in this guiding center 
model. Unfortunately, it is known [12] that the standard charge-sharing scheme 
fails to maintain a sufficiently high accuracy of computation for a long period of 
time, while one could expect the higher-order MPE scheme, such as QPE, or CIC 
with more sophisticated particles, such as parabolic spline, to save the situation. 

Recently, Chen, Langdon, and Birdsall [13] proposed grid “jiggling” and 
“interlacing” schemes in order to reduce the grid effects in charge-sharing schemes, 
such as CIC. They found that “jiggling” produces nonphysical high-frequency 
(-At-l) modes which can be either stable or unstable depending on the velocity 
distribution. “Interlacing” eliminated certain groups of aliases and has no such ill 
effects. It requires, however, that the particles be processed at least twice in each 
time step and, hence, is computationally expensive. Although it is hard to compare 
quantitatively the reduction factors in the “interlacing” and MPE schemes, the 
MPE, while limited by the required grid storage, seems more attractive from the 
computational point of view. 

APPENDIX 

Momentum conseroation. Here we prove that the total momentum is conserved 
in the MPE scheme. As usual, the time rate of change in the total momentum is 
given by 

$ T.M. = & . k j: dk F(k, t) n(-k, t). 
m 64.1) 
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Using Eqs. (7a), (16), and (20)-(22), Eq. (A. 1) becomes 

ilk n( - k, , t) n(k, , t) Z(k, k,) I(k, k,) P(k)/k. 
(A4 

It is easy to show that the integrand is an odd function in k. Hence, we have 
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